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Summary. This is the first paper of a series of two, which enables the evaluation 
of U(n) generator matrix elements in the non-canonical Weyl tableau basis 
adapted to subgroup U(nl) x U(n2). In this paper the explicit closed formulae 
for subduction coefficients are presented. These formulae will become useful 
through an inductive method to be presented in the second paper. 
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1. Introduction 

One of the most promising ideas from group theoretical approaches to the 
molecular configuration interaction (CI) problem advanced during last decades 
is the unitary group approach (UGA) [1-6]. It is not only a mathematically 
beautiful formalism but also a practical and powerful tool both for basis 
generation and evaluation of generator matrix elements. Many of the UGA 
developments up to 1986 have been summarized by Matsen and Pauncz [7]. 

The molecular configuration interaction problem quickly becomes unwieldy 
with increasing numbers of electrons and basis orbitals. It is thus desirable to 
have a unitary group approach formalism giving a general partitioning of the 
system. The essential idea is to consider the following subgroup imbedding 

U(n =n, +n2) ~ U(nl) x U(n2). (1) 
Recently, a complete derivation of the U(n) generator matrix elements in the 
non-canonical bases adapted to the group chain (1) was presented by Gould and 
Paldus [8] from the viewpoint of the Green-Gould characteristic identities for 
GL(n) [9]. Another traditional method of evaluating the U(n) generator matrix 
elements in the non-canonical bases is by means of the subduction coefficients of 
group chain (1), which has previously been considered by Harter and Patterson 
[10]. This method, however, is rather complicated, because a lot of matrix 
elements in the canonical bases need to be calculated even in very simple cases. 

It is our aim in the present series of two papers to offer a new idea, which 
significantly improves the traditional method. We shall examine the problem of 
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evaluating the matrix elements of the U(n) generators in the non-canonical Weyl 
tableau basis, which is symmetry adapted to the subgroup chain (1), by means 
of the method developed in [11]. That method enabled the evaluation of the 
U(2n) generator matrix elements in the Weyl tableau basis adapted to subgroup 
U(2) × U(n). As the first step, we evaluate subduction coefficients of group chain 
(1). 

There have been many attempts to calculate the unitary group subduction 
coefficients. Patterson and Hatter [10] derived recursive formulae for the 
U(n) ~ U(n~) x U(n2) subduction coefficients by the use of spin algebras. Later, 
Wen [12] translated the formulae into spin graphical formulae. Using the 
transformation properties of the tensor basis spanning the irreducible representa- 
tion [2 u/2 - s, lZS] of U(n) under the permutations of electron coordinates, Sarma 
and Dinesha [ 13] obtained relations among the coefficients in a given set, which 
can be determined by the normalization requirement. Recently, Paldus et al. [ 14] 
presented a method to determine the subduction coefficients of the Weyl tableau 
bases. We shall derive, in this paper, explicit closed formulae for arbitrary 
subduction coefficients in terms of the isoscalar factors and the /-particle 
coupling formulae, which are essential for the developments in the second paper 
of this series. 

2. Notation and fundamentals 

We assume that an n-dimensional orbital space V can be partitioned into the 
direct sum of subspaces V~ and V2 with dimensions nl and n2, respectively, so that 

V =  VI @ V2 

n = nl + n2. (2) 
For convenience, we always assume that the orbital order in subspace 1"1 is 
1, 2 , . . . ,  nl, and that in Vz is n~ + 1, n~ + 2 , . . . ,  n~ + n 2. Generally, we shall 
thus associate with the orbital space V the unitary group U.(n), as well as with 

IV,] 
each orbital subspace V e the unitary group U(nt). Now let W ) (or IWi)) be 

. . . .  I . i  / 
the Weyl tableau basis spanning the irreducible representation (IR) [V;] of 
subgroup U(ni), then the non-canonical Weyl tableau basis adapted to the 
s[ubgroup U(nl) x U(n2) for the IR[V] = [2 N/2- s, lZS] of U(n) can be denoted as 

V]; [V1][V2]w1 W2)' where N is the total number of electrons in the system, and S is 

lhe total spin quantum number. 

Further, let [~1))"1" (or IW)) be the canonical Weyl tableau basis adapted to 

the canonical stibgroup chain 

U(n) ~ U(n - l) ~ . . - ~  U(1) (3) 

for the IR[V] of U(n). Then, the transformation between the canonical and 
non-canonical Weyl tableau basis sets is given by the following relation 

It,.q; = /tvJlr<t< \ 
\ w I w, w=/ 

where 
[Vl [V1][V21\ 

w I w, w2/ (5) 
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is a subduction coefficient, and the multiplicity indices are dropped, since they 
will not be required for the case of many-electron systems. 

At first, we recall the basic fact: if IW)/I W2) denotes the skew part in the 
I W) found by removing the boxes belonging to I Wz) from I W), then the 
necessary condition for the subduction coefficients being non-zero is that 

IWI ) = [W)/IW2). (6) 

Furthermore, the subduction coefficient (5) is independent of the actual Weyl 
tableau basis of [W~ ). From now on, we assume that Eq. (6) is always satisfied. 

In general, the subduction coefficients are real and they satisfy the following 
orthogonality relations 

z </tvl (7) 
VI,V2,W1,W2 \ Wl WI W 2 / \  Wl w21w'l , 

([~ [Vl][V2]\~/[V'll[V;][v]\ 
w w ,  W 2 l \  w~ w~ w/=~v,,v~j~w,,w,~w2,~. (8) 

From given [V1] and [V2], all the [V] which satisfy the relation 

[V~] x [V2] ~ [V] (9) 

can be determined by the Littlewood-Richardson rules. In the simplest case of 
a many-electron system, these rules are the same as the rules of angular 
momentum coupling. Namely, if we introduce 

a s  = s~ + s 2 - s  (lo) 
where S(Si) is the spin quantum number of IR[V]([V~]), then relation (9) 
corresponds to 

AS=O, 1,2 . . . .  , d 2 - 1  for d2 ~< dl 

AS=0 ,  1,2 . . . . .  d1--1 for d2 > dl (11) 
where d; denotes the axial distance (without direction) between the last box of 
each column in Young diagram [Ve]. The axial distance is a very important 
concept in our approach where all the formulae contain this quantity [1]. 

All the [V2], which will satisfy relation (9) for given [V] and IV1] can be 
determined by the division rules of Young diagrams [6]. In the case of a Young 
diagram with at most two columns: 

I11 
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where the shaded part refers to [V1] and the total one refers to [V], the Young 
diagram of [V2] should satisfy the relation 

max(/3, O) ~< J.2 ~< min(/1, l~) (12) 

where 22 is the box-number in the second column of [V2], and li are the 
box-numbers indicated in the above diagram (note: 13 has a direction or 
sign). It is obvious that those [I12] satisfying the angular momentum coupling 
relation are not allowed if 13 < 0 because of the limitation of the number of 
electrons. 

Finally, relations (11) or (12) are necessary constraints, as they are the 
selection rules for the subduction coefficients being non-zero. 

3. Explicit expressions for subduetion coefficients 

It is well-known [15] that the U(nl + t) subduction coefficient can be factored 
into a product of the U(n~ + t -  1) subduction coefficient and the isoscalar 
factor R , ,  

where 

[Vnl+ ,1 [Vn,l[Vt]~ 
w.,+,lW.,W, / 

/[Vn 1 + t--1] [Vnl][Vt-1]\ 
=R, \  W.,+,_,lW.,W,_ ' / (13) 

r [Vn,+,] [r,,,][v,] -1 
R, = L[V,,, + , _  111 t J j ' v , - ,  " f  (14) 

It is important to note that the isoscalar factor R t is independent of the Weyl 
tableau basis structure of the [IR] of the canonical subgroup U(nl + t - 1) and 
of the non-canonical subgroup U(t - 1). 

Finally, the group U(n = n~ + n2) subduction coefficient can be expressed as 
a product of isoscalar factors by applying (13) recursively, namely, 

Vn] [Vnl][Vn2]~ ~= F [Vnl-}'t] [Vnl][Vt] 1] = f i  R t. (15) 
W ,  W ,  I W , 2 / = ,  1m[V,l+,_l] [Vt-I]_] t=l 

For t = 1, we have 

R1 = 1. (16) 

We shall now derive closed formulae for the isoscalar factor. According to 
the relations (4) and (13) for the subduction and isoscalar factors, we immedi- 
ately obtain 

I [Vnl+t] [Vn~][Vt] ]=1 forN.l =0,2 (17) 
[Vnl+t_l ] [Vt_  1] +t  

where Nnl +, is the occupancy of the (n 1 + t)th orbital in the space V, in other 
words, that of the t-th orbital in the subspace V2. 
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From Eq. (59) of  [14], it is easy to obtain the expressions for the two 
following special isoscalar factors: 

1 
N 1 

!l 
= "x/ d (18) 

/ 

N 1 N 2 
( - l )  

V a " 
t 

(19) 

It should be pointed out that in [ 14] only the highest weight Weyl tableau bases 
were needed. However, it is now obvious that the conclusions are also correct for 
the special case [Vt] = [lm]. 

In Eqs. (18-19) the explicit schematic expressions for the isoscalar factor are 
used, and the symbol d denotes the axial distance between the last box of  each 
column in [V,~ + ,], and No, N 1, N 2 (No = N I +  N 2) denote the number of boxes 
as shown in the figure. It is obvious that Eqs. (18-19) satisfy the normalization 
condition. 
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From the orthogonality relations of Eqs. (7-8), one can derive the following 
four Rt, which, possessing the same [Vnl + t], [Vnl] and [Vt_ 1], are elements of a 
unitary matrix: 

/ z 

. d .  

7 

(20) 

Combining Eqs. (18) and (19), we obtain 

I1 
t 11 

N 1 

_J 
= N/ ~/- (21) 

1. ul N ~  / d - N  1 

(22) 

where the phase was chosen so that the elementary generator matrix elements are 
always positive. 
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For  the more general case, where [Vt] is an arbitrary Young diagram, noting 
that R, is independent of  the Weyl tableau basis structure of  the IR[Vt_ 1], we 
can get an interesting and useful property of the isoscalar factor, namely, 

/ 

vn i vn 
[Vm+t_l] ! 

[ Vm.t_l] 
I 
i 

[Vm4] 

[V,l+t_l] 

[¥nl,t] 

= 

[Vnl÷t-~l 

/ /  

/ / 

/ /  
( /  

~p 

! 
J 

(23) 

Equation (23) can be obtained by virture of  a special Weyl tableau basis where 
each of  the first P rows consists of  the same integer. 

So far, the expressions for all R t have been obtained. In order to illustrate the 
application of  these formulae, an example for the evaluation of  the subduction 
coefficient for U(8) ~ U(2) x U(6) is shown here. 

l 
1 
2 
3 
4 
5 
7 

4 2 4 
6 5 
8 6 

8 

1 1 1 1 
= 1 . 1 . 1  . . . . . . . .  - 

3 4 3  36" 
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N o w  we go a s t ep  fur ther  and consider t he  si tuat ion where /-particles 
t + 1, t + 2 . . . . .  t + l couple to I Wt ) as an ensemble. This will  be useful for  pa r t  
I I  o f  the present  work.  Then,  instead o f  Eqs. ( 2 1 - 2 2 ) ,  the following expressions 
are obta ined  by a consecutive appl icat ion of  preceding rules: 

/ / 

/ / 2 

/ / 

/ /  

t.l 

t+2 
i 
i 

1 

t.l 

t.l 

i 

t.l 

/ Po!(P1 + l)ld!(d+ P2 + l)! 
(24) 

t+ l l  

t+21 

Pl 

+ 2  ¸ 

i 
I 

t÷t 

1 '~ [Pot(P2 +/)!(d - P~ - 1)l(d - 1 - l)! 

(25) 
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t+l 

t+2 
i i 

Pl I 
i 

t+l 

• " " ~ 2  

J 

t+1 
t,-2 

I 

I 

t+l 
I '  

I ' 

I 

= / P , ! ( - P o - I +  1)!(d+P2)!(d- 1 - l ) !  
q (Po ÷ 1)!(P, - O ! (a -  ])!(a + P=-  l)! 

(26) 

I 

I 

Pl 
J I 
t+ll 

t÷21 
I 

I 

i 
I 

t+l] 
| 

/ / 

z z 

/ / 

/ / 

/ / 

/ / 

/ / '  

/ / 

, ,  

Po 

! t+l [ 

t+2l 
I 

i÷il 
m 

/ 

te~x/( P2!(Po - l + 1)[(d - P, + l - 1)!d! 

= ( - D  v , P 0 +  l ) ! ( P 2 - l ) ! ( a + l ) ! ( a - P 1 -  l)! 

(27) 

In Eqs. (24-27) the parameters Pi and d refer to the case before coupling, P; 
(P0 = P1 + / ' 2 )  are the number of  boxes as shown in the figures, and d is the axial 
distance between the last box of  each column of the canonical basis before the 
/-particles have been coupled. 

It is worthwhile to mention that the results are zero if a factorial of  a 
negative integer appears. This reflects the fact that the selection rules of  Eqs. (11) 
or (12) are not satisfied. 
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